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From all the physical-organic work on phos-
phate esters, we presumed that enzyme-cat-
alyzed phospho transfers would follow one of
three paths: “in-line associative” (where the
acceptor attacks phosphorus from the side op-
posite to the leaving group, not unlike an SN2
reaction in carbon chemistry), “dissociative”
(where monomeric metaphosphate is tran-
siently formed, analogously to an SN1 reac-
tion), or “adjacent associative” (where the ac-
ceptor attacks phosphorus from the same side
as the leaving group and—after a pseudorota-
tion of the phosphorus ligands—the leaving
group departs).

In the 1970s and 1980s, the use of sub-
strates having chiral [16O,17O,18O]-phospho
groups suggested that all single, enzyme-cat-
alyzed phospho-group transfers proceed
with stereochemical inversion at phosphorus
(4). That conclusion limited the pathways to
those having “in-line” geometry, but it left
unanswered the question of whether the
mechanism is fully dissociative via
metaphosphate (with apical P-O distances of
≥ 3.3 Å and bond orders of zero), SN2-like
(with apical P-O distances of 1.91 Å and
bond orders of a half), or fully associative via
an oxyphosphorane (with apical P-O dis-
tances of 1.73 Å and bond orders of 1) (5).

With exquisite clarity, the high-resolu-
tion crystal structures of Lahiri et al. (1)
now provide the answer. The coordination

states of the two phosphorus atoms in the in-
termediate that is formed from the phospho-
enzyme and either glucose 1-phosphate or
glucose 6-phosphate are quite different.
One, at the sugar’s 6-position, has the nor-
mal, four-coordinate tetrahedral arrange-
ment of a phosphate monoester. But the oth-
er is a stretched pentacoordinate trigonal
bipyramidal oxyphosphorane, with the sub-
strate’s C1 oxygen and the carboxylate of
the enzyme’s aspartate-8 as its apical ligands
(see the figure). The electron density at
phosphorus is not ellipsoidal, which argues
against the structure being a time average of
those of a phosphorylated aspartate and a 1-
phosphorylated sugar. The network of hy-
drogen bonds (and a bound magnesium
cation) shows how precisely the enzyme
grips this species, to sequester and preferen-
tially stabilize an otherwise unstable entity. 

So what is this species? Apical bond
lengths of 2.0 to 2.1 Å correspond to P-O
bond orders of a quarter to a third, and the
structure is thus close to what we’d expect
for the transition state of a partly associative
in-line displacement (5). Could this actually
be the transition state, seductively consistent
with Pauling’s view (6) that enzymes are de-
signed explicitly to bind (and thus to stabi-
lize) the transition states of the reactions
they catalyze? But transition states are at
free energy maxima and could never be ob-

served directly. In this case, we must con-
clude that the temperature coefficients of
the various enzyme-bound species are such
that what is a transition state at physiologi-
cal temperatures has become the most stable
intermediate at the very low temperature of
the crystallographic work. Or perhaps the
uncatalyzed reaction involves a transient in-
termediate oxyphosphorane and the enzyme
has evolved to stabilize that intermediate,
lowering in the process the free energies of
the two transition states that flank it. Indeed,
we must hope that the authors will explore
what happens to their structure as the tem-
perature is raised. 

But such questions are less important
than the fact that the simple, attractive, and
anticipated mechanism for enzyme-cat-
alyzed phospho-group transfer has now
been so gratifyingly confirmed.
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W
hy, despite vaccination efforts, is
Boulder, Colorado, weathering
an outbreak of whooping cough

(pertussis)—a potentially fatal illness in
young children—this winter? The answer
to this biological question comes from the
classic mathematical analysis of Kermack
and McKendrick, whose threshold theorem
calculates the minimum level of vaccina-
tion required to prevent an outbreak of an
infectious disease (1). This example of how
mathematics can help biology was just one
of many discussed at a recent series of
Quantitative Environmental and Integrative
Biology workshops (2) and at a recent
NIH-NSF workshop that examined forging

stronger links between mathematicians and
biologists (3). A goal of the workshops was
to seek answers to the questions: Which bi-
ological problems will yield to mathemati-
cal analyses, and how should biology and
mathematics be integrated to achieve this? 

Kermack and McKendrick developed
the threshold theorem to determine the
conditions under which infectious disease
epidemics occur. This theorem has proved
crucial for calculating the level of vaccina-
tion (less than complete coverage) required
to eradicate diseases like polio and small-
pox, and for preventing outbreaks of dis-
eases such as pertussis. This theorem re-
lates the occurrence of an epidemic to the
number of susceptible individuals, the du-
ration of the infectious period, and the in-
fectivity of the disease. The threshold the-
orem was initially developed to answer two
fundamental biological questions: Why do
infectious disease epidemics occur, and

why do they typically die out before all
susceptible individuals contract the dis-
ease? These questions were answered by
using the threshold theorem to develop the
SIR (susceptible, infective, removed) mod-
el (1), which consists of three differential
equations. The SIR model assumes that
over the time scale of an epidemic, births
and deaths in the host population can be
ignored. The model includes the rate of re-
moval (through death or recovery) of in-
fected persons from the group passing on
the infection, instead of specifying the
more correct but harder to analyze assump-
tion that there is a fixed time period during
which an individual can infect others. The
threshold theorem was originally illustrat-
ed using methods that relied on the graph-
ic display of the number of infective and
susceptible individuals during an infec-
tious disease outbreak. The graphic repre-
sentation of the threshold theorem reveals
that the density of susceptible individuals
must exceed a certain critical value for an
epidemic to occur. This theorem has un-
questionable relevance, given heightened
concerns about the deliberate introduction
of new infectious bioterrorist agents.

Workshop participants agreed that
progress in understanding biological prob-
lems will depend on mathematical ad-
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vances in spatial dynamics
(4); stochastic (nonlinear)
dynamics, especially as ap-
plied to spatial systems (5);
and how models are best fit
to the data (6). Spatial sto-
chastic systems in biology,
such as the population dy-
namics of species in forest or
grassland ecosystems, are
motivating development of
new mathematical models. A
complete description of spa-
tial dynamics is extremely
complex (as it would include
the dynamics of means, vari-
ances, third moments, and
higher order moments), and
so approximations are need-
ed. For example, moment-
closure methods approxi-
mate complete dynamics us-
ing only a few moments, thus
enabling the tracking of, for
example, the spatial dynam-
ics of infection rates. This
type of mathematical model
is particularly valuable for
analyzing the dynamics of
infectious diseases because
the likelihood of a suscepti-
ble individual becoming in-
fected does not depend on
the overall level of infected individuals
in the population, but rather on the
severity of infection among those indi-
viduals with whom the susceptible indi-
vidual is in contact. 

Meeting delegates viewed several areas
as especially promising candidates for
successful application of mathematical
and quantitative approaches to solving bi-
ological and societal problems. Examples
include how natural resources should be
managed, forecasting the effects of global
climate change, and evaluating the move-
ment of agricultural pests. A good exam-
ple of how mathematics can benefit biolo-
gy is the calculation of the size and spatial
configuration of marine reserves needed
to sustain a fish population that may be
overexploited. The basic question is how
to calculate the total rate of settlement of
new individuals at any point in space,
summing up contributions from all other
locations. Conditions for the survival and
persistence of marine species have been
derived from discrete-time and continu-
ous-space models. These models are
based on a dispersal kernel model, which
gives the probability of offspring from
marine organisms being recruited at a giv-
en distance along the coast from the point
of release from the parent (see the figure)
(7). The dispersal kernel model has

spurred the design of a series of intercon-
nected marine reserves off the California
coast. The next step is to make sustain-
ability of marine populations apply to
more realistic descriptions of oceano-
graphic processes, to integrate economics
more fully into calculations of marine re-
serve management, and to account for the
uncertainty in the growth rates of marine
populations.

Quantitative approaches can also be
used to calculate how spreading of alleles
from genetically modified organisms
(GMOs) to natural organism populations
might affect those populations. Related
mathematical analyses examine the best
approach for controlled introduction of
GMOs that are resistant to insect pests.
GMO technology is threatened by the risk
that insect pests will evolve resistance to
GMOs, and mathematical modeling sug-
gests ways to reduce this risk (8). 

Mathematics continues to be essential
for understanding the dynamics of infec-
tious disease outbreaks. One dramatic ex-
ample is the foot-and-mouth epidemic in
the United Kingdom in 2001 (9, 10). Tools
such as the dispersal kernel model and ex-
plicit spatial models allowed comparison of
different strategies for controlling the epi-
demic. These analyses enabled the design
of a control strategy based on local culling

of infected and exposed ani-
mals that resulted in halting
of the epidemic.

Many of the same mathe-
matical themes emerge in
cellular and molecular pro-
cesses. In the cell, chemical
energy in the form of ATP is
converted into mechanical
work by molecular mo-
tors—molecules that govern
movement in living systems
(11). The dynamics of these
movements within the cell
depend on stochastic forces
that lead to discrete confor-
mations of the motors, en-
abling them to operate like
molecular ratchets (12).
Mathematical modeling opens
the door to predicting force-
velocity relations and other
quantitative characteristics
of the motors’ actions,
which can then be compared
to actual measurements (13).
Computational approaches
make it possible to attack
problems that are much
more complex than the mere
mechanics of single motors
and to generate “virtual”
structures that can be com-

pared to real data from time-lapse micros-
copy (14).

Workshop participants agreed that a vi-
tal next step will be to promote the training
of scientists with expertise in both biology
and mathematics. A new generation of em-
piricists with stronger quantitative skills
and of theoreticians with an appreciation
for the empirical structure of biological
processes will facilitate a bright future for
the application of mathematics to solving
biological problems.
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Far away, so close. The dynamics of spatial systems are often at the inter-

face between biology and mathematics. The spatial distribution of offspring

around a parent is one example of a spatial process taking place over a dis-

crete time period and can be represented by the dispersal kernel model. The

figure shows the dispersal of crustacean larvae along ocean currents away

from the parent and, for comparison, the dispersal of seeds from a mature

tree. The fact that more offspring land close to the parent rather than far

away is described by the double decaying exponential of the dispersal kernel

model. This model is valuable not only for predicting the dispersal of off-

spring but also for addressing biological problems such as the design of ma-

rine reserves, the spread of invasive species, and the potential influence of

GMOs on natural populations.
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